About convex optimization with constraints

Alexandre Allauzen – Michèle Sebag
Thomas Schmitt
LIMSI – LRI

Oct. 7th, 2015
Reminder: optimisation with constraints

General case

\[
\begin{align*}
\text{Minimize} & \quad f_0(z) \quad z \in \text{domain } D \\
\text{s.t.} & \quad f_i(z) \leq 0 \quad i = 1 \ldots m \\
& \quad h_j(z) = 0 \quad j = 1 \ldots p
\end{align*}
\]

(1)

Notation: \(z^* \) the solution of Pb (??)
\[
p^* = f_0(z^*)
\]

Define the Lagrangian as:

\[
L(z, \lambda, \nu) = f_0(z) + \sum_{i=1}^{m} \lambda_i f_i(z) + \sum_{j=1}^{p} \nu_j h_j(z)
\]

with \(\lambda_i \geq 0 \)
Define the Lagrange dual function as:

\[g(\lambda, \nu) = \inf \{ L(z, \lambda, \nu), z \in D, \lambda \geq 0 \} \]

(2)

Notation: \(\lambda^*, \nu^* = \text{argmin } g(\lambda, \nu) \)

\(d^* = g(\lambda^*, \nu^*) \)

Intuition

- \(\lambda_i, \nu_j \) are the penalties paid for violating constraints
- For \(z \) feasible (i.e. \(f_i(z) \leq 0 \) and \(h_j(z) = 0 \)),
 \[L(z, \lambda, \nu) \leq f_0(z) \]
- Hence \(g(\lambda, \nu) \) provides a lower bound on the optimum \(p^* \).
- \(L \) is linear in \(\lambda \) and \(\nu \): its minimum is very easy to compute;
- \(g \) is concave in \(\lambda \) and \(\nu \) even if \(f_0, f_i \) and \(h_j \) are not convex in \(z \).
Reminder, 3

With

\[g(\lambda, \nu) = \inf \left\{ f_0(z) + \sum_{i=1}^{m} \lambda_i f_i(z) + \sum_{j=1}^{p} \nu_j h_j(z), z \in D, \lambda \geq 0 \right\} \]

Then

- Weak duality (always true)

\[d^* \leq p^* \]

- Strong duality: when \(d^* = p^* \). Usually holds for convex functions \(f_0 \) and \(f_i \).
Reminder, 4

Constraint qualifications
= conditions guaranteeing strong duality in convex pbs.

Slater’s conditions
if there exists z s.t. $f_i(z) < 0$, then strong duality

Remark: if strong duality then

\[
\begin{align*}
 f_0(z^*) &= \inf_x \left\{ f_0(z) + \sum_{i=1}^m \lambda_i^* f_i(z) + \sum_{j=1}^p \nu_j^* h_j(z) \right\} \\
 &\leq f_0(z^*) + \sum_{i=1}^m \lambda_i^* f_i(z^*) + \sum_{j=1}^p \nu_j^* h_j(z^*) \\
 &\leq f_0(z^*)
\end{align*}
\]

Therefore for each $i = 1 \ldots m$, $\lambda_i^* f_i(z^*) = 0$

 if $\lambda_i^* > 0$, $f_i(z^*) = 0$ (saturated or tight constraint).

 if $f_i(z^*) < 0$ (loose constraint), $\lambda_i^* = 0$.

Reminder, 5

Karun-Kush-Tucker conditions on $\tilde{z}, \tilde{\lambda}, \tilde{\nu}$

- Stationarity condition: f_i, h_j differentiable

\[
\frac{\partial L(z, \lambda, \nu)}{\partial z}|_{z=\tilde{z}} = 0
\]

- Slackness condition:

\[
\tilde{\lambda}_i f_i(\tilde{z}) = 0 \text{ for } i = 1 \ldots m
\]

- Feasibility conditions

\[
f_i(\tilde{z}) \leq 0; \quad \tilde{\lambda}_i \geq 0
\]

Theorem

⇒ If z^* is optimum of Pb (??), and λ^*, ν^* minimize g, then KKT conditions are satisfied for (z^*, λ^*, ν^*).

⇐ If f_i convex and h_j affine, then if KKT conditions are satisfied for $\tilde{z}, \tilde{\lambda}, \tilde{\nu}$, then \tilde{z} is optimum for Pb (??) and $\tilde{\lambda}, \tilde{\nu}$ minimize g.