Numerical Approximations for Average Cost Markov Decision Processes

François Dufour ¹ Tomás Prieto-Rumeau ²

¹INRIA, Bordeaux, France

²UNED, Madrid, Spain

INRIA Team TAO Seminar

February 9, 2016

Numerical Approximations for Average Cost MDPs

- Introduction
- 2 Lipschitz-continuous control models
- Approximation of the control model
- An application

Statement of the problem

- We are interested in approximating the optimal average cost and an optimal policy of a discrete-time Markov control process.
- We consider a control model with general state and action spaces.
- Most of the approximation results in the literature are concerned with MDPs with discrete state and action spaces.

Our approach

- We propose procedures to discretize the state and action spaces.
- Discretization of the state space is based on sampling an underlying probability measure.
- Discretization of the action space is made by selecting actions that are "dense" in the Hausdorff metric.
- We show that our approximation error converges in probability to zero at an exponential speed.

Dynamics of the control model

It is a stochastic controlled dynamic system.

- The system is in state x_0 .
- The controller takes an action a_0 and incurs a cost $c(x_0, a_0)$.
- The system makes a transition $x_1 \sim Q(\cdot|x_0, a_0)$.
- The system is in state x_1 . Etc.

On an infinite horizon we have:

- a state process: $\{x_t\}_{t>0}$;
- an action process: $\{a_t\}_{t>0}$;
- a cost process: $\{c(x_t, a_t)\}_{t>0}$.

Definition of the control model

The control model \mathcal{M}

Consider a control model $(X, A, \{A(x) : x \in X\}, Q, c)$ where

- The state space X is a Borel space, with metric ρ_X .
- The action space A is a Borel space, with metric ρ_A .
- A(x) is the measurable set of available actions in state $x \in X$.
- $Q \equiv Q(B|x, a)$ is a stochastic kernel on X given \mathbb{K} , where

$$\mathbb{K} = \{(x, a) \in X \times A : a \in A(x)\}.$$

• $c : \mathbb{K} \to \mathbb{R}$ is a measurable cost function.

Definition of the control model

- A control policy is a sequence $\pi = \{\pi_t\}_{t \in \mathbb{N}}$ of stochastic kernels π_t on A given H_t $(H_0 := X \text{ and } H_t := \mathbb{K} \times H_{t-1})$ satisfying $\pi_t(A(x_t)|h_t) = 1$ for all $h_t \in H_t$ and $t \in \mathbb{N}$, where $h_t := (x_0, a_0, \dots, x_{t-1}, a_{t-1}, x_t)$. Let Π be the family of **randomized** history-dependent policies.
- Let \mathbb{F} be the family of **deterministic stationary** policies, i.e., the class of $f: X \to A$ such that $f(x) \in A(x)$ for $x \in X$.

Optimality criteria

Given $\pi \in \Pi$ and an initial state $x \in X$, the total expected α -discounted cost (0 < α < 1) and the long-run average cost are

$$V_{\alpha}(x,\pi) = E^{\pi,x} \Big[\sum_{t=0}^{\infty} \alpha^t c(x_t, a_t) \Big]$$

$$J(x,\pi) = \limsup_{t\to\infty} E^{\pi,x} \left[\frac{1}{t} \sum_{t=0}^{t-1} c(x_t, a_t) \right].$$

Optimality criteria

• The optimal discounted cost is

$$V_{\alpha}^{*}(x) = \inf_{\pi \in \Pi} V_{\alpha}(x,\pi).$$

The optimal average cost is

$$J^*(x) = \inf_{\pi \in \Pi} J(x, \pi).$$

• A policy $\pi^* \in \Pi$ is average optimal if

$$J(x, \pi^*) = J^*(x)$$
 for all $x \in X$.

Discretizing the state space

Main idea

• We suppose that there exists a probability measure μ on X and a nonnegative measurable function $q(\cdot|\cdot,\cdot)$ on $X\times\mathbb{K}$ such that

$$Q(B|x,a) = \int_B q(y|x,a)\mu(dy)$$

for all measurable $B \subseteq X$ and every $(x, a) \in \mathbb{K}$.

• On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we take a sample of n i.i.d. random observations $\{Y_k\}_{1 \leq k \leq n}$ with distribution μ and we consider the empirical probability measure

$$\mu_n(B) = \frac{1}{n} \sum_{k=1}^n \mathbf{I} \{ Y_k \in B \}.$$

Discretizing the state space

Main idea

ullet In the transition kernel, we replace μ with μ_n

$$Q(B|x,a) = \int_{B} q(y|x,a)\mu(dy) \leadsto \int_{B} q(y|x,a)\mu_{n}(dy)$$

- We have "discretized" the state space: from X to $\{Y_k\}_{1 \le k \le n}$. Integration is discretized: from μ to μ_n .
- We must be able to compute the estimation error

$$\left| \int_X g(y)\mu(dy) - \int_X g(y)\mu_n(dy) \right|.$$

• We need a **convergence** $\mu_n \to \mu$ allowing to **control** such estimation errors for a **certain class** of functions g.

Metrics

• 1-Wasserstein metric. For probability measures in $\mathcal{P}_1(X)$ with finite first moment: $\int_X \rho_X(x,x_0)\mu(dx) < \infty$:

$$W_1(\lambda, \mu) = \inf_{\{\nu: \nu_1 = \lambda, \nu_2 = \mu\}} \int_{X \times X} \rho_X(x_1, x_2) \nu(dx_1, dx_2).$$

- N.B.: The *p*-Wasserstein metric uses $(\rho_X(x_1, x_2))^p$.
- The dual Kantorovich-Rubinstein characterization gives

$$W_1(\lambda,\mu) = \sup_{f \in \mathbb{L}_1(X)} \Big| \int f d\mu - \int f d\lambda \Big|$$

for all 1-Lipschitz continuous functions.

Theorem (Boissard, 2011)

If $\mu \in \mathcal{P}_1(X)$ satisfies the modified transport inequality:

$$W_1(\mu,\lambda) \leq C\Big(H(\lambda|\mu) + \sqrt{H(\lambda|\mu)}\Big)$$

for some C > 0 and all $\lambda \in \mathcal{P}_1(X)$ then there exists γ_0 such that for all $0 < \gamma < \gamma_0$ there exist $C_1, C_2 > 0$ with

$$\mathbb{P}\{W_1(\mu_n,\mu) > \gamma\} \le C_1 \exp\{-C_2 n\} \quad \text{for all } n \ge 1.$$

Here, $H(\lambda|\mu)$ is the entropy $H(\lambda|\mu) = \int \log \frac{d\lambda}{d\mu} d\lambda$. A sufficient condition is the existence of a > 0 and $x_0 \in X$ such that

$$\int_X \exp\{a \cdot \rho_X(x, x_0)\} \mu(dx) < \infty.$$

Our setting

If f is L_f -Lipschitz-continuous

$$\Big|\int f(y)\mu_n(dy)-\int f(y)\mu(dy)\Big|\leq L_fW_1(\mu_n,\mu)$$

and the probability that

$$\Big|\int f(y)\mu_n(dy)-\int f(y)\mu(dy)\Big|>\gamma$$

goes to zero at an exponential rate. So, we will place ourselves in the "Lipschitz continuity" setting.

- The elements of the control model will be supposed to be Lipschitz-continuous.
- The action space will be approximated in a "Lipschitz-continuous" way.

Hypotheses

For each $x \in X$, the set A(x) is compact, and $x \mapsto A(x)$ is Lipschitz continuous with respect to the Hausdorff metric, i.e.,

$$d_H(A(x), A(y)) \le L\rho_X(x, y)$$
 for all $x, y \in X$,

with $d_H(C_1, C_2) = \max\{\sup_{x_1 \in C_1} \rho_X(x_1, C_2), \sup_{x_2 \in C_2} \rho_X(x_2, C_1)\}.$

Hypotheses

There exists a Lipschitz-continuous function $w:X\to [1,\infty)$ such that for all $(x,a)\in \mathbb{K}$

The cost function c is Lipschitz-continuous and

$$|c(x,a)| \leq \overline{c}w(x).$$

The density function q(y|x, a) verifies

- $q(y|x,a) \leq \overline{q}w(x)$.
- It is Lipschitz-continuous in y (resp., (x, a)) uniformly in (x, a) (resp., y).
- $y \mapsto w(y)q(y|x, a)$ is Lw(x)-Lipschitz-continuous.

Hypotheses

• $Qw(x_0, a_0)$ is finite for some $(x_0, a_0) \in \mathbb{K}$ and there is some 0 < d < 1 such that

$$\int_X w(y)|Q(dy|x,a) - Q(dy|x',a')| \le 2d(w(x) + w(x'))$$
 (1)

for all (x, a) and (x', a') in \mathbb{K} .

• As a consequence of (1), there exists $b \ge 0$ such that

$$Qw(x, a) \le dw(x) + b$$
 for all $(x, a) \in \mathbb{K}$.

This is the usual "contracting" condition for average cost MDPs. We impose (1) because it implies a uniform geometric ergodicity condition under which we can use the vanishing discount approach to average optimality.

Dynamic programming equation

Notation

We say that $u: X \to \mathbb{R}$ is in $\mathbb{L}_w(X)$ if u is Lipschitz-continuous and there exists M > 0 with $|u(x)| \le Mw(x)$ for all $x \in X$.

Theorem (Discounted cost)

Given a discount factor $0 < \alpha < 1$, the optimal discounted cost $V_{\alpha}^* \in \mathbb{L}_w(X)$ and it satisfies the α -DCOE

$$V_{\alpha}^*(x) = \min_{a \in A(x)} \left\{ c(x, a) + \alpha \int_X V_{\alpha}^*(y) Q(dy|x, a) \right\} \quad \text{for } x \in X.$$

 $x\mapsto V_{\alpha}(x,\pi)$ might not be continuous, but $x\mapsto\inf_{\pi\in\Pi}V_{\alpha}(x,\pi)$ is continuous!

Dynamic programming equation

Theorem (Average cost)

• There exist $g \in \mathbb{R}$ and $h \in \mathbb{L}_w(X)$ that are a solution to the ACOE

$$g + h(x) = \min_{a \in A(x)} \left\{ c(x, a) + \int_X h(y) Q(dy|x, a) \right\}$$
 for $x \in X$

- We have $g = J^*(x) = \inf_{\pi \in \Pi} J(x, \pi)$ for all $x \in X$.
- If $f \in \mathbb{F}$ attains the minimum in the ACOE, then it is average optimal.

Sketch of the proof: Define $h_{\alpha}(x) = V_{\alpha}^{*}(x) - V_{\alpha}^{*}(x_{0})$. Show that $\{h_{\alpha}\}$ is equicontinuous, and that its Lipschitz constant does not depend on α . Let $\alpha \to 1$.

Approximation of the control model

Approximation of the action space

For all $\mathfrak{d} > 0$ there exists a family $A_{\mathfrak{d}}(x)$, for $x \in X$, of subsets of A satisfying:

- $A_{\mathfrak{d}}(x)$ is a nonempty closed subset of A(x), for $x \in X$.
- For every $x \in X$,

$$d_H(A(x), A_0(x)) \leq \mathfrak{d}w(x).$$

• The multifunction $x \mapsto A_{\mathfrak{d}}(x)$ is $L_{\mathfrak{d}}$ -Lipschitz continuous with respect to the Hausdorff metric, with $\sup_{\mathfrak{d}>0} L_{\mathfrak{d}} < \infty$.

Approximation of the control model

Definition

Given $n \ge 1$ and $\mathfrak{d} > 0$, the control model $\mathcal{M}_{n,\mathfrak{d}}$ is defined by the elements

$$(X, A, \{A_{\mathfrak{d}}(x) : x \in X\}, Q_n, c),$$

Recall that $Q(B|x,a) = \int_{B} q(y|x,a)\mu(dy)$. Here,

$$Q_n(B|x,a) = \frac{\int_B q(y|x,a)\mu_n(dy)}{\int_X q(y|x,a)\mu_n(dy)} = \frac{\sum_{k:Y_k \in B} q(Y_k|x,a)}{\sum_{k=1}^n q(Y_k|x,a)}.$$

Note that $Q_n(\cdot|x,a)$ has finite support, and it assigns probability proportional to $g(Y_k|x,a)$ to Y_k .

Properties of $\mathcal{M}_{n,\mathfrak{d}}$

If $v \in \mathbb{L}_w(X)$ —w-bounded and Lipschitz-continuous— we can compare Qv and Q_nv :

$$|Qv(x,a)-Q_nv(x,a)|\leq C_vw(x)W_1(\mu,\mu_n).$$

We will use the notation:

- $\mathbb{K}_{\mathfrak{d}} = \{(x, a) \in X \times A : a \in A_{\mathfrak{d}}(x)\}.$
- $\Pi_{\mathfrak{d}}$ and $\mathbb{F}_{\mathfrak{d}}$ are the families of all policies and deterministic stationary policies for the control model $\mathcal{M}_{n,\mathfrak{d}}$.
- The expectation operator is $E_{n,0}^{\pi,x}$.
- Let

$$J_{n,\mathfrak{d}}^*(x) = \inf_{\pi \in \Pi_{\mathfrak{d}}} \limsup_{t \to \infty} E_{n,\mathfrak{d}}^{\pi,x} \left[\frac{1}{t} \sum_{t=0}^{t-1} c(x_t, a_t) \right].$$

Properties of $\mathcal{M}_{n,\mathfrak{d}}$

Define

$$c = \frac{1 - d}{4(L_{wq} + L_q(1 + 4(d + b)))}$$

and suppose that $\omega \in \Omega$ is such that $W_1(\mu, \mu_n(\omega)) \leq \mathfrak{c}$. Then we have:

- $Q_n(X|x,a) = 1$ for all $(x,a) \in \mathbb{K}_{\mathfrak{d}}$.
- For all $(x, a) \in \mathbb{K}_{\mathfrak{d}}$,

$$Q_nw(x,a)\leq \frac{1+d}{2}w(x)+2b.$$

• For all (x, a) and (x', a') in $\mathbb{K}_{\mathfrak{d}}$

$$\int_{X} w(y)|Q_{n}(dy|x,a) - Q_{n}(dy|x',a')| \leq (1+d) \cdot (w(x) + w(x'))$$

Properties of $\mathcal{M}_{n,\mathfrak{d}}$

Theorem

If $\omega \in \Omega$ is such that $W_1(\mu, \mu_n(\omega)) \leq \mathfrak{c}$ then

- The control model $\mathcal{M}_{n,0}$ is uniformly geometrically ergodic and it verifies the "same" properties as \mathcal{M} .
- The optimal average cost $J_{n,0}^*(x) \equiv g_{n,0}^*$ is constant and it satisfies the ACOE: for all $x \in X$

$$g_{n,\mathfrak{d}}^* + h(x) = \min_{a \in A_{\mathfrak{d}}(x)} \left\{ c(x, a) + \int_X h(y) Q_n(dy|x, a) \right\}$$

for some $h \in \mathbb{B}_w(X)$.

Besides, h is unique up to additive constants.

Convergence of the optimal average cost

Theorem

There exists $\varepsilon_0 > 0$ such that for any $0 < \varepsilon \le \varepsilon_0$ there exist $\mathfrak{d} > 0$ and constants $\mathcal{S}, \mathcal{T} > 0$ such that

$$\mathbb{P}^*\{|g_{n,\mathfrak{d}}^* - g| > \varepsilon\} \le \mathcal{S} \exp\{-\mathcal{T}n\}.$$

for all n > 1.

Sketch of the proof

ullet From the ACOE for ${\cal M}$ we have

$$g + h(x) \le c(x, a) + Qh(x, a).$$

• Replace Q with Q_n and obtain

$$g + h(x) \leq c(x, a) + Q_n h(x, a) + Cw(x)W_1(\mu, \mu_n).$$

- Iterate this inequality t times, divide by t, and take the limit as $t \to \infty$ to obtain $g \le g_{n,0}^* + CW_1(\mu, \mu_n)$.
- ullet For an ${\mathcal M}$ -canonical policy $f\in {\mathbb F}$

$$g + h(x) = c(x, f) + Qh(x, f).$$

ullet Take the "projection" ilde f of f on $\mathbb{F}_{\mathfrak{d}}$ and obtain

$$g + h(x) \ge c(x, \tilde{f}) + Qh(x, \tilde{f}) - C \mathfrak{d}w(x).$$

• Replace Q with Q_n and proceed as before.

Approximation of an optimal policy

Main idea

• Starting from the ACOE for $\mathcal{M}_{n,\mathfrak{d}}$

$$g_{n,0}^* + h(x) = \min_{a \in A_0(x)} \left\{ c(x,a) + \int_X h(y) Q_n(dy|x,a) \right\},$$

let $\widetilde{f}_{n,\mathfrak{d}} \in \mathbb{F}_{\mathfrak{d}}$ be a canonical policy.

- Since $\widetilde{f}_{n,0} \in \mathbb{F}$, "use it" in the control model \mathcal{M} to obtain the expected average cost $J(x, \widetilde{f}_{n,0})$
- Compare $J(x, \widetilde{f}_{n,0})$ and g.

Approximation of an optimal policy

Difficulties

- For a function v, we have that Qv is Lipschitz-continuous, but Q_nv is locally Lipschitz-continuous.
- The function h in the ACOE for $\mathcal{M}_{n,0}$ is locally Lipschitz-continuous.
- We cannot directly compare Qh with Q_nh .
- ullet There exists a Lipschitz-continuous \tilde{h} with

$$||h-\tilde{h}||_{w} \leq CW_1(\mu,\mu_n).$$

• Use this \tilde{h} to compare $Q\tilde{h}$ and $Q_n\tilde{h}$.

Approximation of an optimal policy

Theorem

There exists $\varepsilon_0 > 0$ such that for any $0 < \varepsilon \le \varepsilon_0$ there exist $\mathfrak{d} > 0$ and constants $\mathcal{S}, \mathcal{T} > 0$ such that

$$\mathbb{P}^*\{J(\widetilde{f}_{n,0},x)-g>\varepsilon\}\leq \mathcal{S}\exp\{-\mathcal{T}n\}.$$

for all $n \ge 1$ and $x \in X$.

Finite state and action approximations

- For applications, suppose that the sets $A_0(x)$ are finite.
- Take a sample $\Gamma_n = \{Y_k(\omega)\}$ of the probability measure μ .
- The control model $\mathcal{M}_{n,\mathfrak{d}}$ has finite state and action spaces.
- We need to determine its optimal average cost $g_{n,\mathfrak{d}}^*$.
- We need to solve the ACOE for $\mathcal{M}_{n,\mathfrak{d}}$ to find a canonical policy.

The linear programming approach

Primal linear programming problem P

 $x \in \Gamma_n \ a \in A_n(x)$

$$\min \sum_{x \in \Gamma_n} \sum_{a \in A_{\mathfrak{d}}(x)} c(x, a) z(x, a) \text{ subject to}$$

$$\sum_{a \in A_{\mathfrak{d}}(x)} z(x, a) = \sum_{x' \in \Gamma_n} \sum_{a' \in A_{\mathfrak{d}}(x')} z(x', a') Q_n(\{x\} | x', a')$$

$$\sum \sum_{a \in A_{\mathfrak{d}}(x)} z(x, a) = 1 \text{ and } z(x, a) \ge 0$$

It is known that min $P = g_{n,0}^*$, the optimal average cost of the control model $\mathcal{M}_{n,0}$.

The linear programming approach

Dual linear programming problem D

$$\max \quad g \quad \text{subject to}$$
 $g+h(x) \leq c(x,a) + \sum_{y \in \Gamma_n} Q_n(\{y\}|x,a)h(y)$

$$g \in \mathbb{R}$$
 and $h(x) \in \mathbb{R}$.

Its optimal value is $g_{n,\mathfrak{d}}^*$ and, at optimality, we obtain a solution of

$$g_{n,0}^* + h(x) \le \min_{a \in A_0(x)} \left\{ c(x,a) + \sum_{y \in \Gamma_n} Q_n(\{y\}|x,a)h(y) \right\}$$
 (2)

but not necessarily of the ACOE.

Solving the ACOE by linear programming

Our approach to approximate an optimal policy is based on a canonical policy for $\mathcal{M}_{n,\mathfrak{d}}$. We need to solve the ACOE for $\mathcal{M}_{n,\mathfrak{d}}$.

Lemma (Maximal property)

Let $\{z^*(x,a)\}\$ be an optimal solution of P, and fix arbitrary x^* with $\sum_{a \in A_0(x^*)} z^*(x^*, a) > 0$.

Let h^* be the unique solution of the ACOE for $\mathcal{M}_{n,\mathfrak{d}}$ such that $h^*(x^*) = 0$, and let h, with $h(x^*) = 0$, verify the inequalities in (2).

Then we have $h < h^*$.

Modified dual linear programming problem D'

$$\max \sum_{x \in \Gamma_n} h(x) \quad \text{subject to}$$

$$g_{n,0}^* + h(x) \le c(x,a) + \sum_{y \in \Gamma_n} Q_n(\{y\}|x,a)h(y)$$

$$h(x^*) = 0$$
 and $h(x) \in \mathbb{R}$.

$\mathsf{Theorem}$

Solving P and then D' yields a solution of the ACOE for $\mathcal{M}_{n,\mathfrak{d}}$.

Consider the dynamics

$$x_{t+1} = \max\{x_t + a_t - \xi_t, 0\} \quad \text{for } t \in \mathbb{N}$$

where

- x_t is the stock level at the beginning of period t;
- a_t is the amount ordered at the beginning of period t;
- ξ_t is the random demand at the end of period t.

The capacity of the warehouse is M > 0. Therefore,

$$X = A = [0, M]$$
 and $A(x) = [0, M - x]$.

The controller incurs:

- a buying cost of b > 0 for each unit;
- a holding cost h > 0 for each period and unit;
- and receives p > 0 for each unit that is sold.

The running cost function is

$$c(x,a) = ba + h(x+a) - pE[\min\{x+a,\xi\}].$$

$\mathsf{Theorem}$

If the $\{\xi_t\}$ are i.i.d. with distribution function F, with F(M) < 1, and density function f, which is Lipschitz continuous on [0, M] with f(0) = 0, then the inventory management system satisfies our assumptions.

Fix $0 < \mathfrak{p} < 1$. The probability measure μ is

$$\mu\{0\}=\mathfrak{p}\quad \text{and}\quad \mu(B)=rac{1-\mathfrak{p}}{M}\lambda(B)\quad \text{for measurable } B\subseteq (0,M],$$

The density function of the demand is

$$f(x) = \frac{1}{\lambda^2} x e^{-x/\lambda}$$
 for $x \ge 0$.

The approximating action sets are

$$A_{\mathfrak{d}}(x) = \Big\{ \frac{(M-x)j}{q_{\mathfrak{d}}-1} \ : \ j=0,1,\ldots,q_{\mathfrak{d}}-1 \Big\}.$$

We take 500 samples of size n for the parameters

$$M = 10, b = 7, h = 3, p = 17, p = 1/10, \lambda = 5/2, q_0 = 20.$$

	n = 50	n = 150	n = 300
Mean	-26.8755	-26.4380	-26.2817
Std. Dev.	2.2119	1.4578	1.0145
	n = 500	n = 700	n = 1000
Mean	-26.1717	-26.1553	-26.1659
Std. Dev.	0.8104	0.6662	0.5734

Table: Estimation of the optimal average cost g.

We determine the canonical policy $\widetilde{f}_{n,0}$ for $\mathcal{M}_{n,0}$ and we evaluate it for \mathcal{M} .

	n = 50	n = 150	n = 300
Mean	-25.6312	-25.8387	-25.9724
Std. Dev.	0.7648	0.5394	0.3954
	n = 500	<i>n</i> = 700	n = 1000
Mean	-26.0406	-26.0497	-26.0833
Std. Dev.	0.3387	0.3276	0.3133

Table: Estimation of the average cost of the policy $\widetilde{f}_{n,\mathfrak{d}}$.

We compute the relative error of $J(x, \tilde{f}_{n,0})$ with respect to g.

$$n = 50$$
 $n = 150$ $n = 300$ $n = 500$ $n = 700$ $n = 1000$ 0.32%

Table: Relative error.

We display the approximation of an optimal policy for the control model \mathcal{M} .

Figure: Estimation of an optimal policy

Conclusions

- We have proposed a general procedure to approximate a continuous state and action MDP.
- We can do this for a "Lipschitz-continuous" control model.
- We prove exponential rates of convergence (in probability).
- For applications, our method provides very good approximations.