Numerical Optimization: Introduction and
gradient-based methods
Master 2 Recherche LRI
Apprentissage Statistique et Optimisation

Anne Auger

Inria Saclay-Ile-de-France

November 2011

http://tao.lri.fr/tiki-index.php?page=Courses
1 Numerical optimization
 • A few examples
 • Data fitting, regression
 • In machine learning
 • Black-box optimization
 • Different notions of optimum
 • Typical difficulties in optimization
 • Deterministic vs stochastic - local versus global methods

2 Mathematical tools and optimality conditions
 • First order differentiability and gradients
 • Second order differentiability and hessian
 • Optimality Conditions for unconstrained optimization

3 Gradient based optimization algorithms
 • Root finding methods (1-D optimization)
 • Relaxation algorithm
 • Descent methods
 • Gradient descent, Newton descent, BFGS
 • Trust regions methods
Numerical or continuous optimization
Unconstrained optimization

- Optimize a function where parameters to optimize are “continuous” (live in \mathbb{R}^n).

$$\min_{x \in \mathbb{R}^n} f(x)$$

n: dimension of the problem corresponds to dimension of euclidean vector space \mathbb{R}^n

- Maximization vs Minimization

Maximize $f = \text{Minimize } -f$
Analytical functions

● Convex quadratic function:

\[
f(x) = \frac{1}{2} x^T A x + b^T x + c
\] (1)

\[
= \frac{1}{2} (x - x_0)^T A (x - x_0) + c
\] (2)

where \(A \in \mathbb{R}^{n \times n} \), symmetric positive definite, \(b \in \mathbb{R}^n \), \(c \in \mathbb{R} \).

Exercice

Express \(x_0 \) in (2) as a function of \(A \) and \(b \). Express the minimum of \(f \).

For \(n = 2 \), plot the level sets of a convex-quadratic function where level sets are defined as the sets

\[
\mathcal{L}_c = \{ x \in \mathbb{R}^n | f(x) = c \}.
\]
Data fitting - Data calibration

Objective

- Given a sequence of data points \((x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, \ldots, N\), find a model \(y = f(x)\) that explains the data.

- In general, choice of a parametric model or family of functions \((f_\theta)_{\theta \in \mathbb{R}^n}\) use of expertise for choosing model or simple models only affordable (linear, quadratic).

- Try to find the parameter \(\theta \in \mathbb{R}^n\) fitting best to the data.

Fitting best to the data

Minimize the quadratic error:

\[
\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^{N} |f_\theta(x_i) - y_i|^2
\]
(Simple) Linear regression

Given a set of data (examples): \(\{y_i, x^1_i, \ldots, x^p_i\} \) \(i=1 \ldots N \)

\[
\min_{\mathbf{w} \in \mathbb{R}^p, \beta \in \mathbb{R}} \sum_{i=1}^{N} |\mathbf{w}^T \mathbf{X}_i + \beta - y_i|^2
\]

\[
\|\tilde{\mathbf{X}} \mathbf{w} - \mathbf{y}\|^2
\]

same as data fitting with linear model, i.e. \(f_{(\mathbf{w}, \beta)}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \beta, \theta \in \mathbb{R}^p \)
k-means

Given a set of observations \((x_1, \ldots, x_p)\) where each observation is a \(n\)-dimensional real vector, k-means clustering aims to partition the \(n\) observations into \(k\) sets \((k \leq p)\), \(S = \{S_1, S_2, \ldots, S_k\}\) so as to minimize the within-cluster sum of squares:

\[
\text{minimize}_{\mu_1, \ldots, \mu_k} \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - \mu_i\|^2
\]
Black-box optimization
Optimization of well placement

A Real-World Problem in Petroleum Engineering
Well Placement Problem

Onwunalu & Durlofsky (2010)

several minutes to several hours!!
Different notions of optimum

- local versus global minimum
 - local minimum x^*: for all x in a neighborhood of x^*, $f(x) \geq f(x^*)$
 - global minimum: for all x, $f(x) \geq f(x^*)$

- essential infimum of a function:
 Given a measure μ on \mathbb{R}^n, the essential infimum of f is defined as
 $$\text{ess inf } f = \sup \{ b \in \mathbb{R} : \mu(\{x : f(x) < b\}) = 0 \}$$

 important to keep in mind in the context of stochastic optimization algorithms
What Makes a Function Difficult to Solve?

- **ruggedness**
 non-smooth, discontinuous, multimodal, and/or noisy function

- **dimensionality**
 (considerably) larger than three

- **non-separability**
 dependencies between the objective variables

- **ill-conditioning**
What Makes a Function Difficult to Solve?

cut from 3-D example, solvable with an evolution strategy
Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say \([0, 1]\). To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space \([0, 1]^{10}\) would require \(100^{10} = 10^{20}\) points. A 100 points appear now as isolated points in a vast empty space.
Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say $[0, 1]$. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space $[0, 1]^{10}$ would require $100^{10} = 10^{20}$ points. A 100 points appear now as isolated points in a vast empty space.

Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.
Separable Problems

Definition (Separable Problem)
A function f is separable if

$$
\arg \min_{(x_1, \ldots, x_n)} f(x_1, \ldots, x_n) = \left(\arg \min_{x_1} f(x_1, \ldots), \ldots, \arg \min_{x_n} f(\ldots, x_n) \right)
$$

\Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example: Additively decomposable functions

$$
f(x_1, \ldots, x_n) = \sum_{i=1}^{n} f_i(x_i)
$$

Rastrigin function
Non-Separable Problems

Building a non-separable problem from a separable one \(^{(1,2)}\)

Rotating the coordinate system

- \(f : \mathbf{x} \mapsto f(\mathbf{x})\) separable
- \(f : \mathbf{x} \mapsto f(R\mathbf{x})\) non-separable

\(R\) rotation matrix

\(^1\) Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

Ill-Conditioned Problems
Curvature of level sets

Consider the convex-quadratic function
\[f(x) = \frac{1}{2} (x - x^*)^T H (x - x^*) = \frac{1}{2} \sum_i h_{i,i} x_i^2 + \frac{1}{2} \sum_{i \neq j} h_{i,j} x_i x_j \]

\(H \) is Hessian matrix of \(f \) and symmetric positive definite.

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to \(10^{10} \) are not unusual in real world problems.

If \(H \approx I \) (small condition number of \(H \)) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of \(H^{-1} \)) is necessary.
What Makes a Function Difficult to Solve?
...and what can be done

<table>
<thead>
<tr>
<th>The Problem</th>
<th>The Approach in ESs and continuous EDAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruggedness</td>
<td>non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed</td>
</tr>
<tr>
<td></td>
<td>stochastic, non-elitistic, population-based method</td>
</tr>
<tr>
<td></td>
<td>recombination operator serves as repair mechanism</td>
</tr>
</tbody>
</table>
What Makes a Function Difficult to Solve?

...and what can be done

<table>
<thead>
<tr>
<th>The Problem</th>
<th>The Approach in ESs and continuous EDAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruggedness</td>
<td>non-local policy, large sampling width (step-size)</td>
</tr>
<tr>
<td></td>
<td>as large as possible while preserving a reasonable convergence speed</td>
</tr>
<tr>
<td></td>
<td>stochastic, non-elitistic, population-based method</td>
</tr>
<tr>
<td></td>
<td>recombination operator</td>
</tr>
<tr>
<td></td>
<td>serves as repair mechanism</td>
</tr>
<tr>
<td>Dimensionality, Non-Seperability</td>
<td>exploiting the problem structure</td>
</tr>
<tr>
<td></td>
<td>locality, neighborhood, encoding</td>
</tr>
</tbody>
</table>
What Makes a Function Difficult to Solve?
\[\ldots\text{and what can be done}\]

<table>
<thead>
<tr>
<th>The Problem</th>
<th>The Approach in ESs and continuous EDAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruggedness</td>
<td>non-local policy, large sampling width (step-size)</td>
</tr>
<tr>
<td></td>
<td>as large as possible while preserving a reasonable convergence speed</td>
</tr>
<tr>
<td></td>
<td>stochastic, non-elitistic, population-based method</td>
</tr>
<tr>
<td></td>
<td>recombination operator</td>
</tr>
<tr>
<td></td>
<td>serves as repair mechanism</td>
</tr>
<tr>
<td>Dimensionality, Non-Separability</td>
<td>exploiting the problem structure</td>
</tr>
<tr>
<td></td>
<td>locality, neighborhood, encoding</td>
</tr>
<tr>
<td>Ill-conditioning</td>
<td>second order approach</td>
</tr>
<tr>
<td></td>
<td>changes the neighborhood metric</td>
</tr>
</tbody>
</table>
Different optimization methods

- **Deterministic methods**
 - Convex optimization methods - gradient based methods
 - most often require to use gradients of functions
 converge to local optima, fast if function has the right assumptions
 (smooth enough)
 - deterministic methods that do not require convexity: simplex method, pattern search methods
Different optimization methods (cont.)

- **Stochastic methods**

 - use of randomness to be able to escape local optima

 - pure random search, simulated annealing (SA)

 - not reasonable methods in practice (too slow)

 - genetic algorithms

 - not powerful for numerical optimization, originally introduced for binary search spaces \(\{0, 1\}^n\)

 - evolution strategies

 - powerful for numerical optimization

Remarks

- Impossible to be exhaustive
- Classification is not that binary

methods combining deterministic and stochastic do of course exist
1. Numerical optimization
 - A few examples
 - Data fitting, regression
 - In machine learning
 - Black-box optimization
 - Different notions of optimum
 - Typical difficulties in optimization
 - Deterministic vs stochastic - local versus global methods

2. Mathematical tools and optimality conditions
 - First order differentiability and gradients
 - Second order differentiability and hessian
 - Optimality Conditions for unconstrained optimization

3. Gradient based optimization algorithms
 - Root finding methods (1-D optimization)
 - Relaxation algorithm
 - Descent methods
 - Gradient descent, Newton descent, BFGS
 - Trust regions methods
Differentiability

Generalization of derivability in 1-D

Given a normed vector space \((E, \|\cdot\|)\) and complete (Banach space), consider \(f : U \subset E \rightarrow \mathbb{R}\) with \(U\) open set of \(E\).

- \(f\) is differentiable in \(x \in U\) if there exists a continuous linear form \(Df_x\) such that

\[
f(x + h) = f(x) + Df_x(h) + o(\|h\|) \tag{3}
\]

\(Df_x\) is the differential of \(f\) in \(x\)

Exercice

Consider \(E = \mathbb{R}^n\) with the scalar product \(\langle x, y \rangle = x^T y\). Let \(a \in \mathbb{R}^n\), show that

\[
f(x) = \langle a, x \rangle
\]

is differentiable and compute its differential.
Gradient

If the norm $\| \cdot \|$ comes from a scalar product, i.e. $\| x \| = \sqrt{\langle x, x \rangle}$ (the Banach space E is then called an Hilbert space), the gradient of f in x denoted $\nabla f(x)$ is defined as the element of E such that

$$Df_x(h) = \langle \nabla f(x), h \rangle$$ \hspace{1cm} (4)

Riesz representation Theorem

Taylor formula - order one

Replacing differential by (4) in (3) we obtain the Taylor formula:

$$f(x + h) = f(x) + \langle \nabla f(x), h \rangle + o(\| h \|)$$
Gradient (cont)

Exercice

Compute the gradient of the function \(f(x) = \langle a, x \rangle \).

Exercice

Level sets are sets defined as

\[
\mathcal{L}_c = \{ x \in \mathbb{R}^n | f(x) = c \}.
\]

Let \(x_0 \in \mathcal{L}_c \neq \emptyset \). Show that \(\nabla f(x_0) \) is orthogonal to the level set in \(x_0 \).
Gradient

Examples

- if $f(x) = \langle a, x \rangle$, $\nabla f(x) = a$
- in \mathbb{R}^n, if $f(x) = x^T A x$, then $\nabla f(x) = (A + A^T)x$
- particular case if $f(x) = \|x\|^2$, then $\nabla f(x) = 2x$
- in \mathbb{R}, $\nabla f(x) = f'(x)$
- in $(\mathbb{R}^n, \|\cdot\|_2)$ where $\|x\|_2 = \sqrt{\langle x, x \rangle}$ is the euclidian norm

\[
\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right)^T
\]

“natural” gradient (Amari, 2000)

“vanilla” gradient

Attention: this equality will not hold for all norms. Has some importance in machine learning, see the natural gradient topic introduced by Amari.
Second order differentiability

- **(first order) differential:** gives a linear local approximation
- **second order differential:** gives a quadratic local approximation

Definition: second order differentiability

\(f : U \subset E \to \mathbb{R} \) is differentiable at the second order in \(x \in U \) if it is differentiable in a neighborhood of \(x \) and if \(u \mapsto Df_u \) is differentiable in \(x \)
Second order differentiability (cont.)

Other definition

\(f : U \subset E \to \mathbb{R} \) is differentiable at the second order in \(x \in U \) iff there exists a continuous linear application \(Df_x \) and a bilinear symmetric continuous application \(D^2f_x \) such that

\[
f(x + h) = f(x) + Df_x(h) + \frac{1}{2} D^2f_x(h, h) + o(\|h\|^2)
\]

In a Hilbert \((E, \langle \rangle)\)

\[
D^2f_x(h, h) = \langle \nabla^2 f(x)(h), h \rangle
\]

where \(\nabla^2 f(x) : E \to E \) is a symmetric continuous operator.
Hessian matrix

In \((\mathbb{R}^n, \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y})\), \(\nabla^2 f(\mathbf{x})\) is represented by a symmetric matrix called the hessian matrix. It can be computed as

\[
\nabla^2(f) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}.
\]

Exercice

In \(\mathbb{R}^n\), compute the hessian matrix of \(f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}\).
Optimality condition

First order Necessary condition

for 1-D optimization problems $f : \mathbb{R} \rightarrow \mathbb{R}$

Assume f is derivable

- x^* is a local optimum $\Rightarrow f'(x^*) = 0$

 not a necessary condition: consider $f(x) = x^3$

 proof via Taylor formula: $f(x^* + h) = f(x^*) + f'(x^*)h + o(\|h\|)$

- Points y such that $f'(y) = 0$ are called critical or stationary points.

Generalization

If $f : E \mapsto R$ with (E, \langle , \rangle) a Hilbert is differentiable

- x^* is a local minimum of f $\Rightarrow \nabla f(x^*) = 0$.

 proof via Taylor formula
Optimality conditions
Second order necessary and sufficient conditions

If f is twice continuously differentiable
- if x^* is a local optimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite
- if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then there is an $\alpha > 0$ such that $f(x) \geq f(x^*) + \alpha \|x - x^*\|^2$
1. Numerical optimization
 - A few examples
 - Data fitting, regression
 - In machine learning
 - Black-box optimization
 - Different notions of optimum
 - Typical difficulties in optimization
 - Deterministic vs stochastic - local versus global methods

2. Mathematical tools and optimality conditions
 - First order differentiability and gradients
 - Second order differentiability and hessian
 - Optimality Conditions for unconstrained optimization

3. Gradient based optimization algorithms
 - Root finding methods (1-D optimization)
 - Relaxation algorithm
 - Descent methods
 - Gradient descent, Newton descent, BFGS
 - Trust regions methods
Optimization algorithms

- Iterative procedures that generate a sequence \((x_n)_{n \in \mathbb{N}}\) where at each time step \(n\), \(x_n\) is the estimate of the optimum.

Convergence

- No exact result in general, however the algorithms aim at converging to optima (local or global), i.e.

\[
\|x_n - x^*\| \xrightarrow[n \to \infty]{} 0
\]

convergence speed of the algorithm = how fast \(\|x_n - x^*\|\) goes to zero

- Equivalently, given a fixed precision \(\epsilon\), the algorithms aim at approaching the optimum \(x^*\) with precision \(\epsilon\) in finite time

running time = how many iterations is needed to reach the precision \(\epsilon\)
Newton-Raphson method

Method to find the root of a function \(f : \mathbb{R} \rightarrow \mathbb{R} \)

- linear approximation of \(f \): \(f(x + h) = f(x) + hf'(x) + o(\|h\|) \)
- at the first order, \(f(x + h) = 0 \) leads to \(h = -\frac{f(x)}{f'(x)} \)
- Algorithm: \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \)
- quadratic convergence: \(|x_{n+1} - x^*| \leq \mu |x_n - x^*|^2 \)
 provided the initial point is close enough from the root \(x^* \) and there is no other critical point in a neighborhood of \(x^* \)

secant method: replaces the derivative computation its the finite difference approximation

Application to the minimization of \(f \)

- try to solve the equation \(f'(x) = 0 \)
- algorithm: \(x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)} \)
Bisection method

An other method to find the root of a 1-D function

- bisects an interval and then selects a subinterval in which a root must lie
- method guaranteed to converge if f continuous and the initial points bracket the solution

$$\|x_n - x^*\| \leq \frac{|a_1 - b_1|}{2^n}$$
Relaxation algorithm
Naive approach for optimization of \(f : \mathbb{R}^n \to \mathbb{R} \)

Algorithm

- successive optimization w.r.t. each variable

1. choose an initial point \(x^0, k=1 \)

2. while not happy
 - for \(i = 1, \ldots, n \)
 \[x_i^{k+1} = \arg \min_{x \in \mathbb{R}} f(x_1^{k+1}, \ldots, x_{i-1}^{k+1}, x, x_i^k, \ldots, x_n^k) \]
 use a 1D-minimization procedure
 - endfor

 \(k = k+1 \)

Critics

- Very bad for non-separable problems
- Not invariant if change of coordinate system
Descent methods

General principle

1. choose an initial point $x^0, k = 1$
2. while not happy
 2.1 choose a descent direction $d_k \neq 0$
 2.2 choose a step-size $\sigma_k > 0$
 2.3 set $x_{k+1} = x_k + \sigma_k d_k, k = k + 1$

Remaining questions

- How to choose d_k ?
- How to choose σ_k ?
Gradient descent

- Rationale: \(d_k = -\nabla f(x_k) \) is a descent direction

Indeed for \(f \) differentiable

\[
f(x - \sigma \nabla f(x)) = f(x) - \sigma \| \nabla f(x) \|^2 + o(\sigma) \lesssim f(x)
\]

for \(\sigma \) small enough

Step-size

- optimal step-size

\[
\sigma_k = \arg \min_{\sigma} f(x_k - \sigma \nabla f(x_k)) \tag{5}
\]

- in general precise minimization of (5) is expensive and unnecessary, instead a line search algorithm executes a limited number of trial steps until one loose approximation of the minimum is found
Gradient descent

Convergence rate on convex-quadratic function

On $f(x) = -\frac{1}{2}x^TAx - b^Tx + c$ with A a symmetric positive definite matrix with $Q = \text{cond}(A)$ we have that the gradient descent algorithm with optimal step-size satisfy:

$$f(x_k) - \min f \leq \left(\frac{Q - 1}{Q + 1}\right)^{2k} [f(x_0) - \min f]$$

The convergence rate depends on the starting point, however $\left(\frac{Q - 1}{Q + 1}\right)^{2k}$ gives the correct description of the convergence rate for almost all starting points.

Very slow convergence for ill-conditionned problems
Newton algorithm, BFGS

Descent methods

Newton method

- descent direction: \(-[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)\)

- points towards the optimum on \(f(x) = x^T Ax + b^T x + c\)

- However, hessian matrix is expensive to compute in general and its inversion is also not immediate

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

- construct in an iterative manner using solely the gradient, an approximation of the Newton direction \(-[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)\)
Trust regions methods

General idea

- instead of choosing a descent direction and minimizing along this direction, trust regions algorithms **construct a model** m_k **of the objective function** (usually a quadratic model)
- because the model may not be a good approximation of f far away from the current iterate x_k, the search for a minimizer of the model is restricted to a region (**trust region**) around the current iterate
- trust region is usually a ball, whose radius is adapted (shrunked if no better solution is found)
Was not handled in this class
but you might want to have a look at it

Constraint optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

subjected to \(c_i(x) = 0, \ i = 1, \ldots, p \)

and \(b_j(x) \geq 0, \ j = 1, \ldots, k \)