Fullscreen
Loading...
 
Print

Module Deep Learning, Alexandre Allauzen et Michele Sebag

Examen de l'an dernier

Pointeurs

  1. Vidéos des cours de Hugo Larochelle, accessibles ici. Voir également les informations détaillées plus bas.
  2. Cours de Yann Le Cun au Collège de France


14 nov. apres-midi AA

Généralités NN_2017_Cours1.pdf

22 nov. matin AA

backprop

29 nov. matin AA

regularisation et dropout

6 dec. matin AA

deep learning

13 dec. matin

Pas de cours / TP : SGD, Adagrad, ...

10 jan. matin

  • Pas cours
  • TP à 10h45

17 jan. matin (2 cours) MS

1er février apres-midi - Attention changement de date !

31 janvier apres-midi
présentation articles
  1. Attention Is All You Need , Mohamed Ali Darghouth et Walid Belrhalmia.
  2. Prototypical Networks for Few-shot Learning, NIPS 2017
  3. A Bayesian Data Augmentation Approach for Learning Deep Models, NIPS 2017
  4. Understanding deep learning requires rethinking generalization , Eden BELOUADAH et Mariem Bouhaha
  5. Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples, NIPS 2017
  6. Bayesian Compression for Deep Learning, NIPS 17
  7. Gradient Descent Can Take Exponential Time to Escape Saddle Points, NIPS 17
  8. When Cyclic Coordinate Descent Beats Randomized Coordinate Descent, NIPS 17
  9. Variance-based Regularization with Convex Objectives, NIPS 17
  10. Convergent Learning: Do different neural networks learn the same representations?
  11. Learning Activation Functions to Improve Deep Neural Networks
  12. Neural Machine Translation by Jointly Learning to Align and Translate , Taycir Yahmed, ??
  13. Auto-Encoding Variational Bayes
  14. Dual Learning for Machine Translation , Louis Trouche et Warren Pons
  15. Rationalizing Neural Predictions , Chloé Mercier et Julien Louis
  16. Visualizing and Understanding Neural Models in NLP , Amin Biad, Ghiles Sidi Said
  17. Generating Sequences With Recurrent Neural Networks
  18. Wavenet: A Generative Model for Raw Audio
  19. Practical Variational Inference for Neural Networks
  20. MobileNets , Ludovic Kun
  21. DeepBach: a Steerable Model for Bach Chorales Generation , Adrien Pavao, Eléonore Bartenlian




Contributors to this page: sebag and Alexandre.Allauzen .
Page last modified on Wednesday 07 of February, 2018 16:02:34 CET by sebag.