Welcome to TAO Web site


The TAO team reached the 12 years age limit of INRIA teams at the end of 2016.
Two new teams were born:
  • RANDOPT (RANDomized OPTimization), within the Applied Maths Center at Ecole Polytechnique, is working on all types of blackbox optimization scenarios, focusing on CMA-ES type approaches. Anne Auger (project head) and Nikolaus Hansen are the former TAO members who created RANDOPT, together with Dimo Brockhoff (migrated from DOLPHIN team in Lille).
  • TAU (TAckling the Underspecified), still located at LRI in Université Paris-Sud, aims to tackle the vagueness of the Big Data purposes. It includes the other members of TAO - well, except those who have left us, see the updated list of members. The new web site for TAU is still under construction. In the meantime, you can now download the first official TAU activity reports (2017 and later, see below).

The remaining of this web site is now part of History, and should not be thought of as representing any current activity - except for the Publications page, that is automatically updated from the HAL public repository .

You can also browse the whole of TAO history through our activity reports (HTML format): 2005 , 2006 , 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 , 2014 , 2015 , 2016 , 2017 (TAU) , 2018 - draft


Visiting us
Codalab : A platform to organize machine learning challenges.

Who is TAO ?

TAO is the mixed INRIA Saclay CNRS LRI, Université Paris-Sud research group interested in the interplay of Machine Learning (A for Apprentissage) and Optimization (O). The two pillars of TAO's research are:
  • Machine Learning
  • Evolutionary Computation

Last activity reports: 2005 , 2006 , 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 , 2014 , 2015 , 2016 (temporary version)


  • Isabelle Guyon is general co-chair of the NIPS 2017 conference.
  • Isabelle Guyon is program co-chair of the NIPS 2016 conference.
  • Balazs Kégl, Cécile Germain and Isabelle Guyon co-organized the The Higgs boson: A Machine Learning Challenge, most attended ML challenge on Kaggle at the time.
  • Best paper award in GECCO 2015 - Genetic Programming , Memetic Semantic Genetic Programming Robin Ffrancon and Marc Schoenauer
  • Best paper award in PPSN 2014 - Parallel Problem Solving from Nature , Maximum Likelihood-Based Online Adaptation of Hyper-Parameters in CMA-ES, Ilya Loshchilov, Marc Schoenauer, Michèle Sebag and Nikolaus Hansen
  • Marc Schoenauer has been elected Chair of ACM-SIGEVO, Special Interest Group for Genetic and Evolutionary Computation (2015)
  • Michele Sebag has been elected general chair of the Steering Committee of the European Association for Machine Learning and Knowledge Discovery (2015)


See also Old News

Research (under reconstruction)

The main on-going research directions/projects are:

  • Autonomic Computing - how to make a gigantic distributed computing system self-aware, self-healing, self-optimizing, self-?... (more...)
    • Project: Grid Observatory, Work Package in EGEE-III.


  • Developmental Design, Swarm Robotics and other Complex Systems. When what you optimize is the process leading to the result (this is ''embryogenesis'). more...
    • Project: SYMBRION Integrated Project, FP7.

  • Multi-Disciplinary and Continuous Optimization; dealing with computationally expensive, noisy, mixed, structured, objective functions. (more ...)
    • Projects OMD and OMD2

  • Optimal decision making under uncertainty - best illustrated by the computer-Go program MoGo? - first program to ever win over a professional Go player. (more...)

  • Reservoir Computing. How can large random structures be more efficient than carefully crafted ones (e.g. in Neural Networks) ? (more...)

Contributors to this page: evomarc , Isabelle , sebag , ggrefens , furtlehn , nicolas , brockho , auger , rros , cgp , buondia , hpaugam , alvaro.fialho , jm , monteiro , Olivier , cedric , chardon , devert and lopes .
Page last modified on Saturday 11 of May, 2019 13:42:22 CEST by evomarc.