Fullscreen
Loading...
 
Tao
Print

Courses

2017 - 2018

EDT M2 AIC 2017-2018.pdf

Module Apprentissage, Michele Sebag and Alexandre Allauzen. TP: Matthieu Labeau


Module Deep Learning, Alexandre Allauzen et Michele Sebag


2017 Module Reinforcement Learning, Michele Sebag, Diviyan Kalainathan


Module Apprentissage, Michele Sebag and Alexandre Allauzen. TP: Thomas Schmitt

Ressources Module AIC 2016-2017


Module Deep Learning, Alexandre Allauzen, Michèle Sebag and Thomas Schmitt


2016 Module Reinforcement Learning, Michele Sebag, Diviyan Kalainathan



Master: Organisation

JANVIER - AVRIL

Projets, Isabelle Guyon


NOVEMBRE - FEVRIER

Module Reinforcement Learning, Freek Stulp and Michele Sebag


Module Deep Learning, Alexandre Allauzen, Gaetan Marceau-Caron, Yann Olliver, Michele Sebag


SEPTEMBRE - NOVEMBRE

Module Apprentissage, Michele Sebag and Alexandre Allauzen. TP: Thomas Schmitt

Matérial

  1. Projets Apprentissage
  2. Discussion Apprentissage 2015

Introduction - decision trees (23 sept. 2015)

Validation - linear discriminant analysis (30 sept. 2015)


Support Vector Machines (7 oct. 2015)


Décision Bayésienne (14/10)

Cours uniquement / TP sur les SVM

Bayesien Naif et données continues (28/10)

Cours et TP sur MNIST: TC1-tp-BN.html
TC1-tp-BN.html

Clustering (03/11)

Cours, suite du TP sur MNIST démarrage du devoir à rendre, voir
https://perso.limsi.fr/Individu/allauzen/webpages/pmwiki.php?n=Cours.AIC-TC-Assignments


2014-2015
PLANNING_EDT M2R IAC 2014-2015.pdf

Oral ASO 2014 2 février 2015

Examens 2014

  1. Examen Module 6 (Robotique et Agents Autonomes) Exam_OptRAA_2014.pdf

Second semester

Wednesday, 9-12am, room 213, PUIO: Apprentissage Statistique, Optimisation & Applications


Friday, 9-12am, room 213, PUIO: Robotics and Autonomous Agents


M2R: Apprentissage Statistique et Optimisation : Alexandre Allauzen, Anne Auger, Michele Sebag

  1. Cours 1: Introduction, Arbres de décision, Validation
    1. Slides, révisés:main_revised.pdf
  2. Cours SVM
    1. Slides Cours_SVM_14.pdf

2013 - 2014

Quelques liens

  1. 13 janvier 2014 http://www.forbes.com/sites/85broads/2014/01/06/six-novel-machine-learning-applications/
  2. 13 janvier 2014. http://passeurdesciences.blog.lemonde.fr/2014/01/12/teleportez-vos-bras-pour-manipuler-des-objets-a-distance/
  3. 9 dec. 2013. http://perso-etis.ensea.fr/alexpitt/LaRobotiqueEtLeVivant_en.html

L2 Vie Artificielle : Alexandre Allauzen et Michele Sebag


M2R: Apprentissage Statistique et Optimisation : Alexandre Allauzen, Michele Sebag, Marc Schoenauer



M2R: Apprentissage Statistique & Optimisation Avancés: Michele Sebag, Anne Auger, Balazs Kégl

  1. Cours 1: Neural Nets
    1. pdf , 4 dec. Orsay, 9h-12h.
  2. Cours 2 et 3: Optimisation numérique par algorithmes stochastiques adaptatifs (Stratégies d'Evolutions, CMA-ES)
    1. Transparents de cours , 11 & 18 dec. 2013
  3. Cours 4: Deep Learning
    1. Presentation Yoshua Bengio AAAI 2013
    2. Conference part 1
    3. Conference part 2
  4. Cours 5: Boosting
    1. slides
    2. intro chapter
    3. multiclass (in Appendix)
    4. multiboost code
  5. Cours 6: Multiclass, ensembles, calibration, model compression
    1. John Platt's original paper on model compression, Niculescu-Mizil&Caruana's paper on the same subject
    2. Rich Caruana's slides on model compression from ICML13 budgeted learning
  6. Cours 7: Monte-Carlo Markov chains
    1. Rémi Bardenet's slides on MCMC from IN2P3's School of Statistics ( proceedings )
  7. Cours 8: Apprentissage non supervisé
    1. pdf ,

M2R: Robotique et agents autonomes: Michele Sebag et Jamal Atif

  1. Cours 1: Introduction
    1. pdf , 6 dec. Orsay, 14h-17h.
  2. Cours 2: Apprentissage par renforcement
    1. pdf , 13 dec. Orsay, 14h-17h.
  3. Cours 8: Changement de représentations
    1. pdf , 7 dec. Orsay, 9h-12h.

M1 MPRI: Apprentissage Michele Sebag & Benoit Barbot

  1. Cours 1 , 16 sept. Paris, 16h-19h.
  2. Cours 2 , 30 sept.
  3. Cours 3 , 14 oct.
  4. Cours 4 , 28 oct.
  5. Cours 5 , 18 nov. Revisé 21 nov.
  6. Cours 6: Deep Learning.
    1. Slides: Tutorial Yoshua Bengio, ICML 2012
  7. Cours 7: Ensemble learning
    1. Cours 7 , 13 jan.
  8. Cours 8: Unsupervised learning
    1. Cours 8 , 27 jan.
  9. Cours 9: Changes of representation
    1. Cours 9 , 10 fev.
  10. Cours 10: Reinforcement learning
    1. Cours 10 , 24 fev. 2014.

2012 - 2013

Tronc commun: Apprentissage Statistique et Optimisation

introductory course on machine learning and optimization. To get a first flavor of it: read the slides on decision trees & validation (first course) and on support vector machines (6th course).

Module Apprentissage Statistique, Optimisation et Applications - Option 2

follow-on: advanced course on machine learning and optimization

Module Robotique - Option 6


L3 ENS-Cachan, Cours d'apprentissage


Retour des étudiants, 2012-2013


2011 - 2012

Departement Informatique, Université Paris-Sud


Ressources

Web sites


Cours 2011-2012

L3 ENS-Cachan, Cours d'apprentissage

Tronc commun Master 2R IAC, Information, Apprentissage, Cognition, TC2

Sondage des étudiants


Horaire de passage des projets

5 mars 2012. 10 mn d'exposé, 10 mn de questions. Envoyez l'horaire choisi à sebag at lri dot fr : premier arrivé premier servi.

  1. 10h
  2. 10h 20
  3. 10h 40
  4. 11h
...

Liste des cours

  1. Cours Introduction 3 octobre 2011
  2. Cours Réseaux Neuronaux {file name="Cours_IAC_TC2_2011_NN.pdf" desc="6 octobre 2011}
  3. Cours Bayesien Naif transparents
  4. Cours Apprentissage non supervisé transparents
  5. Cours Modeles de Markov transparents 1 , transparents 2
  6. Cours Représentations 27 octobre
  7. Cours Optimisation: Partie I: Introduction et méthodes déterministes, 3 novembre
  8. Cours Optimisation: Partie II: Méthodes stochastiques, 3 novembre


Voir aussi http://www.limsi.fr/Individu/yvon/mysite/mysite.php?n=Site.ASO

Option 2: Apprentissage Statistique, Optimisation et Applications

  1. Cours 30 nov. 2011
  2. Document Metric Learning, slides K. Weinberger Weinberger.pdf
  3. Cours du 7/14 Décembre 2011 - Optimisation par algorithmes stochastiques adaptatifs
  4. Cours du 14 Décembre - Evaluation des performances
  5. Cours 4 jan. 2012
  6. Cours 11 jan. 2012
  7. Cours 18 janvier 2012, Apprentissage par renforcement, Part I , Part II , Part III
  8. Cours 3 février, Monte-Carlo Tree Search COURS_RL.pdf

Articles


Contributors to this page: sebag , Alexandre.Allauzen , auger , ThomasS , adecelle , Emanuel.Aldea , kegl , fyaa , PierreA and rros .
Page last modified on Friday 10 of November, 2017 16:08:06 CET by sebag.